Post

Python logging with loguru

Python logging with loguru

This is an extension of my 2025 Learning Log.

About

Loguru is a python package for logging. It is intended to make logging simpler, less painful, and enjoyable.

Installation

pip install loguru

Log levels

There are seven log levels in loguru. Each of the log level is associated with a numerical value, and a constant name. The default level is DEBUG.

  • TRACE (5): record fine-grained information about the program’s execution path for diagnostic purposes
  • DEBUG (10): record messages for debugging purposes
  • INFO (20): record informational messages that describe the normal operation of the program
  • SUCCESS (25): similar to INFO but used to indicate the success of an operation
  • WARNING (30): indicate an unusual event that may require further investigation
  • ERROR (40): record error conditions that affected a specific operation.
  • CRITICAL (50): record error conditions that prevent a core function from working
1
2
3
4
5
6
7
8
...
logger.trace("A trace message.")
logger.debug("A debug message.")
logger.info("An info message.")
logger.success("A success message.")
logger.warning("A warning message.")
logger.error("An error message.")
logger.critical("A critical message.")

Output

1
2
3
4
5
6
7
2022-08-10 11:58:33.224 | DEBUG | __main__:<module>:12 - A debug message.
2022-08-10 11:58:33.224 | INFO | __main__:<module>:13 - An info message.
2022-08-10 11:58:33.225 | SUCCESS | __main__:<module>:14 - A success message.
2022-08-10 11:58:33.226 | WARNING | __main__:<module>:15 - A warning message.
2022-08-10 11:58:33.226 | ERROR | __main__:<module>:16 - An error message.
2022-08-10 11:58:33.227 | CRITICAL | __main__:<module>:17 - A critical message.

Aside from these, custom log levels can also be defined.

1
2
3
4
5
6
import sys
from loguru import logger

logger.level("FATAL", no=60, color="<red>", icon="!!!")
logger.log("FATAL", "A user updated some information.")

Output

1
2022-08-26 11:34:13.971 | FATAL   | __main__:<module>:42 - A user updated some information.

Contextual data

Contextual data include other relevant information that may be useful for filtering, correlating, or tracing information in the logs

In loguru, these are contained within the {extra} directive

1
2
logger.add(sys.stderr, format="{time:MMMM D, YYYY > HH:mm:ss} | {level} | {message} | {extra}")

Either bind() or contextualize() method can be used to log contextual information

Using bind() creates a child logger that inherits contextual data from its parent. It does not affect the original logger

1
2
3
4
5
6
7
8
9
10
11
12
13
import sys
from loguru import logger

logger.remove(0)
logger.add(sys.stderr, format="{time:MMMM D, YYYY > HH:mm:ss} | {level} | {message} | {extra}")

childLogger = logger.bind(seller_id="001", product_id="123")
childLogger.info("product page opened")
childLogger.info("product updated")
childLogger.info("product page closed")

logger.info("INFO message")

Output

1
2
3
4
September 16, 2022 > 13:04:10 | INFO | product page opened | {'seller_id': '001', 'product_id': '123'}
September 16, 2022 > 13:04:10 | INFO | product updated | {'seller_id': '001', 'product_id': '123'}
September 16, 2022 > 13:04:10 | INFO | product page closed | {'seller_id': '001', 'product_id': '123'}
September 16, 2022 > 13:06:08 | INFO | INFO message | {}

Using contextualize() method modifies extra directly and does not return a new logger. It needs to be used with a with statement

1
2
3
4
5
6
7
8
9
10
11
12
13
import sys
from loguru import logger

logger.remove(0)
logger.add(sys.stderr, format="{time:MMMM D, YYYY > HH:mm:ss} | {level} | {message} | {extra}")

def log():
    logger.info("A user requested a service.")


with logger.contextualize(seller_id="001", product_id="123"):
    log()

Output

1
August 12, 2022 > 11:00:52 | INFO | A user requested a service. | {'seller_id': '001', 'product_id': '123'}

Example usage

Here are some of the ways loguru can be used. This script contains combined examples.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import sys
from loguru import logger

# remove default configuration
logger.remove()

# create a handler that has a custom format
# items in curly braces {...} are called directives 
# by default, logs are sent to the sys.stderr
# sys.stdout outputs to terminal
# <level> directive uses different colors for different levels
	# can also use colors e.g. <green>
logger.add(
	sys.stdout, 
	format = "{time:MMMM D, YYYY} {level} --- <level>{message}</level> {extra}",
	serialize = True, # outputs log in JSON format
	level = "WARNING" # any level below this will not be outputted
)

# possible to setup more than one handler
logger.add(
	"app.log" # output log to file,
	serialize = True,
	rotation = "5 seconds", # sends logs to a new log file once previous log file has expired; can also be in terms of file size e.g. "1 MB"
	retention = "10 seconds", # keeps only recent log files, deletes expired log files (compressed or uncompressed) generated more than 10 seconds ago
    compression = "zip" # expired logs are compressed

# ------------ #
## add contextual data
# using bind()
# can pass as many key-values as needed
child_logger = logger.bind(user_id = 1, ip_adress = "192.158.1.38")
# these will now contain the {extra} dictionary
child_logger.info("An info message!!!")
child_logger.error("An error occured!!!")

# using contextualize() instead of bind()
# needs to be inside the with context manager
with logger.contextualize(user_id = 1, ip_adress = "192.158.1.38"):
	logger.info("An info message!!!")
	logger.error("An error occured!!!")

# ------------ #
## logging error
# using a decorator
@logger.catch(level = "CRITICAL") # default is level ERROR
def read_file(filename):
	with open(filename) as f:
		return f.read()

# alternatively, use a context manager
with logger.catch():
	read_file("input.txt") # this file does not exist

Structured logging

Loguru can output structured logs in the form of JSON using the parameter serialize = True in logger.add().

The default output can be further customized as in the example below using logger.patch()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import sys
import json
from loguru import logger


def serialize(record):
    subset = {
        "timestamp": record["time"].timestamp(),
        "message": record["message"],
        "level": record["level"].name,
    }
    return json.dumps(subset)


def patching(record):
    record["extra"]["serialized"] = serialize(record)


logger.remove(0)

logger = logger.patch(patching)
logger.add(sys.stderr, format="{extra[serialized]}")
logger.debug("Happy logging with Loguru!")

Output

1
{"timestamp": 1663328693.765488, "message": "Happy logging with Loguru!", "level": "DEBUG"}

Some best practice

As logging can affect the performance of an application, it is important to be mindful of how much and how often logging is used. It should be enough to enable diagnosing potential issues but not impact the application performance.

Rotate log files to manage log file size, avoid performance issues, and simplify debugging. Rotating log files means periodically creating new log file, archiving or deleting old ones.

Write meaningful log messages. These include

  • Being clear and concise - be on point and avoid jargon
  • Providing context - e.g. what function generated the info, what are the input parameters
  • Consistency - use a consistent format across log messages
  • Providing actionable insights (e.g. how to resolve the issue, or link to relevant documentation)

Keep sensitive data out of log files.

Resources

This post is licensed under CC BY 4.0 by the author.